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A theory is derived for the class of long two-dimensional waves, comprising 
solitary and periodic cnoidal waves, that can propagate with unchanging form 
in heterogeneous fluids. The treatment is generalized to the extent that the 
waves are supposed to arise on a horizontal stream of incompressible fluid whose 
density and velocity are arbitrary functions of height, and the upper surface of 
the fluid is allowed either to be free or to be fixed in a horizontal plane. Explicit 
formulae for the wave properties and a general interpretation of the physical 
conditions for the occurrence of the waves are achieved without need to specify 
particular physical models; but in a later part of the paper, $4, the results are 
applied to three examples that have been worked out by other means and so 
provide checks on the present theory. These general results are also shown to 
accord nicely with the principle of ‘conjugate-flow pairs ’ which was explained 
by Benjamin (1963b) with reference to swirling flows along cylindrical ducts, 
but which is known to apply equally well to flow systems of the kind in question 
here. 

The theory reveals certain physical peculiarities of a type of flow model 
often used in theoretical studies of internal-wave phenomena, being specified 
so as to make the equation for the stream-function linear. In  an appendix, some 
observations are also made regarding the ‘ Boussinesq approximation ’, which 
too is often used as a simplifying assumption in this field. It is shown, adding to 
a recent discussion by Long (1965), that finite internal waves may depend cruci- 
ally on small effects neglected in this approximation. 

1. Introduction 
I n  order to define the class of internal waves that is the subject of this paper, it 

is heIpful to refer fist to the problem of long gravity waves upon homogeneous 
liquids. A satisfactory definition for the present purpose is suggested by recalling 
how the classical solitary- and cnoidal-wave solutions-as given for instance in 
Lamb’s text-book (1932, $5 252,253)-are explained in relation to other chapters 
of water-wave theory, particularly to the non-linear ‘ shallow-water ’ theory 
due to Airy (Lamb, $0 187, 188), which appeared originally to demonstrate the 
impossibility of continuous long waves having both finite amplitude and per- 
manent shape. The essential explanation proceeds as follows (cf. Ursell 1953; 
Benjamin & Lighthill 1954; Long 1964). 

Taking the depth of the undisturbed fluid as the unit of length, one is presented 
with two dimensionless scale parameters for consideration in developing approxi- 
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mate theories: the amplitude e of the vertical displacements, and the minimum 
horizontal length I typical of the wave motion. Being meant to apply to very 
long waves, Airy’s theory neglects the effects of vertical accelerations, which 
are a fraction O ( P 2 )  of the effects included. Hence it shows that waves of eleva- 
tion steepen ahead of their crests at a rate proportional to e times the velocity 
co = Jg of infinitesimal waves with extreme length (Lamb, p. 279). On the other 
hand, the linearized ‘surface-wave’ theory (Lamb, ch. 9), retaining only the 
first term of an expansion in terms of ./I, shows that a non-sinusoidal wave 
suffers dispersion of its steepest parts at a rate depending on the difference 
between the phase and group velocities of its predominant spectral components, 
which for long waves is found to become proportional to c,/P (see Jeffreys & 
Jeffreys 1946, 5 17.09). Considered together, the two approximate theories 
point to the possibility of an intermediate class of waves for which a cancellation 
of these two opposing tendencies may permit permanency of form. This 
important central ground was first covered by Korteweg & de Vries (1895), 
whose analysis took both E and E-2 to be small but gave equal standing to these 
two parameters, hence proceeding to a first approximation for the effects of 
both finite amplitude and vertical accelerations. The class of steady waves 
forthcoming from this type of analysis comprises the solitary wave, for which 
the ratio €12 of the two small parameters has a maximum O(l) ,  cnoidal waves, 
for which eP takes somewhat smaller values, and sinusoidal waves, which are 
given in the limit as eZ2 tends to zero. 

Now, with regard to internal waves a third basic parameter comes into con- 
sideration, namely the scale for the density variations with height. This can 
be taken as b-l if b is the fractional change in density over the total (unit) depth 
of fluid, and for the moment let us restrict the discussion to the case of waves 
propagating into a region of fluid initially at rest, so that b-l is the only scale 
height for the undisturbed state. (We shall see later that, when there is a non- 
uniform horizontal flow initially, its vertical scale as well as b-l may be important 
in the following respects.) An infinite number of internal-wave modes is generally 
possible in a given heterogeneous-fluid system, but for clearness we now fix 
attention on the first of them, which is the fastest moving, and denote by c, 
the speed of infinitesimal, extremely long waves in this mode. It is well known 
that c1 = O(bg)*, and since b < 1 in most practical applications cl may be con- 
siderably smaller than the speed of long ‘surface waves’ on fluid of the same 
depth. From the extensive body of theory available for internal waves of in- 
finitesimal amplitude E (e.g. see Lamb 1932, $236; Yih 1 9 6 0 ~ ;  Yanowitch 1962), 
it appears generally true that the speed of sinusoidal waves in a particular mode 
is a maximum for infhite wavelength. Hence a general conclusion may readily 
be derived similar to the one mentioned above regarding the dispersion of long 
non-sinusoidal waves: for such a wave in the first mode, the rate of dispersion is 
seen to be O(c,/P) [for an instance of the sort of simple argument that is required, 
see Benjamin & Barnard (1964, pp. 204-206)l. 

Unfortunately, no general ‘shallow-water ’ theory for internal waves has 
yet been published to which we might have appealed for the other element in 
the proposed explanation. However, the required general result may be deduced 
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readily enough from first principles. We shall not delay here to present a proper 
derivation, which could by itself fill a whole paper, and it must suffice to describe 
one possible argument in barest outline. This adapts a method given by Lamb 
(1932, 0 175) for deriving certain results in A q ' s  theory, and considers a long 
infernal wave of finite amplitude travelling in one direction only. Each vertical 
section through the wave is viewed in a frame of reference such that the motion 
relative to the undisturbed fluid far ahead is approximately steady, and con- 
ditions of mass and energy conservation are applied. Then the method of 'con- 
jugate-flow' analysis explained by Benjamin (19623) is used to find the local 
wave speed. It thus appears in general that this speed exceeds the infinitesimal- 
wave speed c1 by a fraction O(ba), where a is the local amplitude, so that as a 
whole the wave steepens-i.e. decreases its length scale Z-at a rate O(c, be). [This 
conclusion is borne out by the results of recent work by Benney (1966), which 
is mentioned again below and is to be published in the near future.] 

Hence, retracing the steps explaining the Korteweg & de Vries theory, we 
deduce that internal solitary and cnoidal waves are, at least in the first mode, 
characterized by scales such that be12 = O(l) ,  although both be and 1-2 may be 
arbitrarily small. The framework of this deduction clarifies both the physical 
and analytical basis of the present theory, which is accordingly identified as 
a counterpart in all essentials to the Korteweg & de Vries theory for long 
waves of permanent form. However, in formally developing the approxi- 
mation that gives solitary and cnoidal waves, we shall conveniently take just 
erather than be as the expansion parameter and assume I = O(6-8); in other words, 
we shall proceed as if b = O( I), taking no advantage of the usual property that 
b Q 1, and allow the general, crucial dependence of the solutions on 3 to emerge 
as an end-result of the analysis. 

The theory of internal solitary waves was initiated by Keulegan (1953) 
and Long (1956) who investigated two-fluid systems with fixed upper boundaries. 
The corresponding problem when the upper boundary is free was treated by 
Peters & Stoker (1960), and they also examined a t  length the more difficult 
problem of solitary waves in a fluid whose density decreases exponentially with 
height. It was recognized by them that their theory would yield periodic solu- 
tions, i.e. cnoidal waves, in the same category of approximation as the solitary- 
wave solution; but they did not attempt to interpret the circumstantial dis- 
tinctions between the possible solutions in this general class. The method of 
analysis used by Peters & Stoker has been extended by Shen (1964, 1965) to 
deal with solitary waves in compressible heavy fluids, and very recently Benney 
(1966) has developed a new general method-certainly no less successful than 
the present one in so far as the results of the two can be compared-for treating 
unsteady as well as steady non-linear waves in stratified shear flows. 

A very powerful analysis of some aspects of the present problem has been 
made by Ter-Krikorov (1963), using methods that he had previously applied 
with great effectiveness to the study of solitary waves on a stream of homogeneous 
fluid with vorticity (a problem treated in a somewhat different way by Benjamin 
1 9 6 2 ~ ) .  Allowing wide generality in the specification of primary density and 
velocity distributions, he succeeded in the difficult task of proving the con- 
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vergence of approximation schemes that yield solitary and cnoidal waves, thus 
establishing the existence of waves with permanent form in the present type 
of system. This achievement is allied to the existence proof that Friedrichs & 
Hyers (1954) found for the classical solitary wave, which was extended to cnoidal 
waves by Littman (1957). 

Taking a line of approach complementary to Ter-Krikorov’s fundamental 
work on the analytical problem, the present paper aims particularly to elucidate 
the practical applications of the theory. The phenomena of lee waves and internal 
bores are brought into the discussion, for instance, and the object is to fit them 
into a general physical interpretation. In  fact the accomplishment considered to 
be of most value in the paper is to build up a classification of various internal- 
wave phenomena that is a precise parallel to the one achieved in Benjamin & 
Lighthill’s ( 1954) presentation of classical cnoidal-wave theory, which was 
shown to account neatly for the undular hydraulic jump and several other well- 
known effects in open-channel flows (see also Benjamin 1956). A note will also 
be made of certain connexions with the author’s theory of vortex breakdown 
(19623, 1965), which virtually proved the possibility of waves of the present 
type in swirling flows along cylindrical ducts but did not demonstrate them 
explicitly. 

2. Formulation of the problem and basic equations 
The primary state upon which waves are to be superposed consists of a layer 

of frictionless fluid, of depth $, resting on a rigid horizontal bottom. Its upper 
surface may be either free, i.e. at  pressure p = 0, or fixed by a rigid horizontal 
plane. The density p of the fluid is an arbitrary function of height y above the 
bottom, though necessarily decreasing upwards to ensure ‘static stability ’. 
There may be a primary parallel flow, the horizontal velocity being an arbitrary 
function U(y). The dynamic stability of such a system to small disturbances is a 
difficult question which will not be taken up here, but reference can be made 
to papers by Miles (1961, 1963) and Howard (1961) for an account of modern 
developments in the subject. A sufficient condition for stability, which will be 
assumed here to clear this aspect, is that -gp-ldp/dy 2 &(dU/dy)2 (see Howard 
1961). Presumably, by taking this condition to be rather more than marginally 
satisfied, we can also ensure the stability of the steady wave disturbances having 
small but finite amplitude that are to be investigated below. 

We take a horizontal axis x with respect to which the waves to be analysed 
are stationary. Thus the respective primary velocity in the x-direction becomes 
W = c+ U ,  if c be the wave velocity upetremn in a fixed frame of reference. 
The special cases of propagation into a fluid at rest (U = 0)  and of downstream 
propagation (c+ U < 0)  are obviously included in this general representation, 
and for the most part there is no need to distinguish between them in the de- 
velopment of the theory (cf. Benjamin 1962a, p. 101). In  $ 2  of the author’s 
previous paper just cited several physical considerations were discussed relating 
to flow models of the present kind, in particular with regard to the implications 
of an inviscid initial flow with vorticity, and this reference may serve in lieu 
of a basic physical discussion here. 
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Let $(x, y) denote the stream-function for a steady two-dimensional flow 
in the specified frame of reference, so that the horizontal and vertical components 
of velocity are given by 

It is assumed that no reversal of flow occurs in any vertical section, which means 
that $ varies monotonically with y. On the further assumption that the fluid 
is incompressible and non-diffusive, density is constant along each streamline, 
and this property is representable by 

u =  $v, v = (2.1) 

P = P($.). (2.2) 

The dynamical condition on each streamline is that the stagnation pressure or 
‘total head’ is constant; thus 

Consider next the ‘flow force’, equal to the horizontal pressure force plus the 
flux of horizontal momentum, for a surface of unit span extending between any 
two points A and B in the flow plane: that is 

By use of (2.3) to eliminate p ,  this becomes 

P R  

J A  

In particular, for a vertical section (dx = 0) between the bottom y = 0 and the 
upper boundary y = h, let us use a new symbol S for the flow force; thus, for this 
special case, 

y = x =  ~~{~+L($~-$~)-sPY)dz/. (2.5) 

This quantity has a role of central importance in the subsequent analysis. Note 
that h = it, (const.) when the upper boundary is fixed, but h = h(x) when it is 
free and so can be displaced by the wave motion. 

2.1. A new derivation of Long’s equation 
From the general flow-force integral (2.4) certain well-known results can be de- 
rived in a simple way, which seems worth some discussion as a novel alternative 
to the usual, more direct methods of derivation. We first note that the value of 
9’ given by (2.4) is independent of the path between fixed points A and B in a 
simply-connected region of the flow, because in the absence of any horizontal 
external force the flow force across a closed surface (e.g. one demarked by two 
alternative paths between A and B )  must be zero. We now consider the formal 
variation in 9’ according to (2.4) when the path between A and B is changed 



246 T .  Brooke Benjamin 

from one described by the equation x = g(y) to one described by x = &(y) + S[(y) .  
In  evaluating the variation of the integral, keeping the element dy fixed, we 
may put 

8(*$3 = $ X $ X Z K  

(Ya$3 = $lI$X& 

6(dx)  = (K)ydY, 
JH,  SP = (H',  p') $x& 

where H' and p' denote dH/d$ and dp/d$. Hence the &st variation, which must 
of course vanish, is given by 

Integrating the final term in the integral by parts and using the condition that 
8g = 0 at the end-points, we obtain the result 

with 

Since Sg is arbitrary and $, cannot be zero everywhere except in a strictly 
horizontal parallel flow, it follows that 

9- = 0. (2.8) 

This second-order partial differential equation for the stream-function, which 
is generally non-linear, was derived by Dubreil-Jacotin (1937) and by Long 
(1953) directly from the equations of motion, and it has been used by them and 
many others as the starting-point for studies of steady internal waves. It is 
commonly called Long's equation. 

Note, incidentally, that an equation akin to (2.6) but not as informative 
may be obtained by differentiation of (2.5) with respect to x. After the differentia- 
tion and an integration by parts, the terms outside the integral sign are seen to 
vanish in consequence of the boundary condition at  y = h, either p = 0 or 
dh/dx = 0 for a free or fixed surface respectively. The result is 

We have dS/dx = 0 as an obvious physical property in the absence of horizontal 
external forces, and so (2.9) is consistent with (2.8). But (2.8) isnot proved by the 
present result, since $x is not an arbitrary function of y. 

2.2. Yih's transformation and the identijication of linear systems 
A transformation introduced by Yih (1960b; see also Long 1953, p. 46) which 
simplifies Long's equation is now recalled, revealing a point of great significance 
to our subsequent analysis. Because of the property (2.2), there exists a 
pseudo-stream-function $(x, y) such that 

p h  = p b  = -$,. (2.10) 
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In terms of this, (2.4) may be rewritten 

(2.11) 

and (2.5) rewritten 

s = J ~ ~ H ( f i ) + ~ ( ~ ~ - ~ ~ ) - g ~ ~ ( f i ) } ~ ~ .  0 (2.12) 

By means of the variational argument used to obtain (2.8), it  is readily found 
from (2.11) that 

(2.13) 

(cf. Yih 1960b, equation (10); Ter-Krikorov 1963, equation (4)). This equation 
may also be derived, of course, by substitution of (2.10) into (2.8). 

Exact solutions of (2.13), and afortiori of (2.8), have so far been obtained only 
in special cases where the equation is linear. The chief aim of Yih’s paper (1960b) 
was to identify the complete class of such cases, and his simpler equation (2.13) 
is clearly better suited to this purpose than Long’s equation (2.8). The necessary 
and sufficient condition for (2.13) to have a linear form is simply that both p 
and H are polynomials of degree no higher than quadratic in $. It follows at 
once from this that, if the stream-function is expressed as the sum of a primary 
function and a perturbation, the expansion of the flow-force integral (2.12) 
in terms of the perturbationwill terminate at second order when the upper boundary 
is fixed. This analytical property will be shown later to imply certain physical 
peculiarities of heterogeneous-fluid systems specified so as to make the equation 
for the stream-function linear. Such systems have frequently been taken as 
tractable models for lee-wave and kindred phenomena (e.g. see Long 1958), 
and it has generally been assumed that no qualitative difference exists between 
them and the much wider class of systems for which (2.13) is non-linear. The 
distinctions that will be pointed out presently do not in any sense undermine 
previous theoretical work on the basis in question, but they do provide some 
much-needed clarification of this extensive branch of the subject. 

3. Main analysis 
The essence of our method is to regard the definition of the flow force 8 as an in- 

tegral equation and, in effect, to find the solution by successive approximations. It 
must be anticipated from the start, however, that solutions with the same charac- 
teristics as ordinary solitary and cnoidal waves will not emerge until an advanced 
stage in the process of approximation, in fact at third order in the expansion 
parameter. Precisely the same type of singular-perturbation problem is presented 
as in classical solitary-wave theory (see Ursell 1953), and as in that context no 
reliable qualitative conclusion can be drawn before the required approximation 
is complete. In  the case of a fixed upper boundary, equation (2.5) or (2.12) would 
make a suitable starting point, but an analysis proceeding directly therefrom 
would encounter considerable difficulty indealing with the case of a free boundary. 
To cover both cases with equal simplicity, the following device is used (cf. 
Benjamin 1 9 6 2 ~ ~  p. 103). 
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3.1. Transformation of variables 
Take the height y of the individual streamlines as the dependent variable, and 
let the independent variables be x and the height, q say, of the respective stream- 
lines in the original parallel flow; thus 

Y = Y ( X ,  7). (3.1) 

This representation is unique on the assumption that no reversal of flow occurs 
anywhere; i.e. all streamlines connect without bifurcation to every vertical 
section and cross it in the same order of height. The idea is illustrated in figure 1. 

FIauRE 1. Definition sketch showing primary velocity profile W(7).  The height y of the 
atreamlines is considered as a function of their height 7 in the primary flow and of the 
horizontal co-ordinate x. 

Since d$/dy = W(7)  by definition, we have 

1 YZ u = W(q)- ,  v = W(q)- .  
y7l y7l 

Also, p and H are expressible as functions of q alone, since @ is uniquely deter- 
mined by 7. Hence, writing pW2 = Q(q), we get from (2.5) 

and for the value of S in the primary flow, where = q, 

Note that the integral (3.3) has the fixed limit h, even if the upper boundary is 
free, in contrast to the integral (2.5). The advantages of the transformation (3.1) 
owe essentially to this feature. 

3.2. Nethod of successive approximution 

To obtain approximate results for the vertical displacements of the streamlines 

(3.5) 

from their original level, we put 

Y = rl f s a x ,  r l ) ,  
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regarding E: as a small number, and expand 8 - X o  in powers of E.? It can be 
expected that the coefficient of el in the expansion will vanish identically, 
in view of the general property of all wave systems that flow-force perturbations 
(i.e. 'wave resistance') are no larger than of second order in displacements (cf. 
Lamb 1932,s 249; Benjamin 19623, Appendix, Q(c) ) .  The demonstration of this 
is quite interesting in the present case, however, and the details are worth 
noting. 

To O(E) ,  we get from (3.3) and (3.4) 

Here po denotes the pressure in the primary flow. But po satisfies the hydrostatic 
law dpo/dr] = -gp. Hence (3.6) gives 

s - so = e[pOf;loh". 

These integrated terms vanish because 5 = 0 on the bottom 7 = 0, and at  the 
upper boundary 7 = h, either 5 = 0 (fixed surface) or p o  = 0 (free surface). 

3.3. Injinitesimal disturbances 

The well-established theory of stable infinitesimal waves in heterogeneous 
liquids (e.g. see Yih 1 9 6 0 ~ ;  Yanowitch 1962) is recovered when the expansion 
of #-So is taken to second order. We first require the linearized form of the 
boundary condition for a free surface, adding to the exact conditions 6 = 0 at 
q = 0 and, for a fixed upper boundary, 6 = 0 at 7 = ho. Evaluating the total 
head at the free surface, f i s t  for the primary flow and then for the disturbed flow, 
we have 

Linearization in B after substitution of (3.5) gives directly 

QC, = gPC a t  7 = hoe 

To O(s2), we get from (3.3) and (3.4) 

{ M C ;  - a - 9PCC71d7 

The integrated terms vanish in consequence of the boundary conditions, with 
either (3.8) or 6 = 0 at 7 = h,. Hence 

t It is implied here that B represents the typical magnitude of y-7 when expressed 
in units of the original total depth h,,; thus 5 = O( 1) in these units. 
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To the same order of approximation, and again making use of the boundary 
conditions, we 6nd that 

Since d(S - So)/dx = 0 in the absence of horizontal external forces, this equation 
suggests that 

(3.10) 

and comparison with (2.9) confirms that (3.10) is equivalent to the linearized 
form of Long’s equation. Equation (3.10) can be obtained in several other ways, 
for instance by the variational method used in $ 2  or by direct linearization of 
Long’s equation after the transformation (3.1) is introduced; but a more detailed 
proof need not delay us. This is, clearly enough, the equation to be satisfied 
by illfinitesimal steady disturbances, and it may easily be shown to correspond 
to  the other forms of basic linearized equation that have been used by previous 
authors (e.g. Lamb 1932, $235; Yih 1960a; Yanowitch 1962). 

Substitution of (3.10) into (3.9) gives 

(3.11) 

a neat equation with several points of physical interest (cf. Benjamin 19623, 
equation (A22)). First, it  proves that a flow-force reduction (i.e. positive wave 
resistance) is a necessary property of sinusoidal internal waves produced without 
energy loss, just as is well known to be the case for gravity waves on a homogeneous 
liquid. Note, however, that the wave resistance So - S becomes progressively 
smaller, for a given amplitude factor E ,  as the wavelength increases and hence the 
z-derivatives in (3.11) diminish in magnitude. This is readily appreciated to 
be an essential property of infinitesimal waves in any system that, as will be 
shown later for the present one, can manifest finite waves of the solitary and 
cnoidal type. Equation (3.11) also shows that S = So for an infinitesimal distur- 
bance having real exponential dependence on x. This case includes the out- 
skirts of a solitary wave, where the displacements caused by the wave motion 
become very small and hence the linearized theory becomes applicable (see 
Benjamin 19623, pp. 596, 600). 

3.4. The eigenvalue problem for sinusoidal injinitesimal waves 
Putting C(z, 7) = #(v) sin (m + v), we get from (3.10) and the boundary con- 
ditions the alternative systems 

(3.12) 

(3.13) 

$ = O  at q = O ,  

either # = 0 (fixed) or Q -  d 4  = gp4 (free) at 7 = h,. 
drl 

Pirst suppose that Q = p(c + U ) 2  is specified. Then, for either form of the upper 
boundary condition, the problem of finding values of a2 for which (3.12) and (3,13) 
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have non-trivial solutions is a standard Sturm-Liouville problem. According to 
a well-known theorem (Ince 1926, §10.61), there exists an infinite set of real 
eigenvalues a: > a: > 4 > ... having no limit-point except a2 = -m. Only a 
limited number, if any, of these can be positive, which means that only this 
number of sine-wave forms of 5 is possible for a given U and wave velocity c. 
As will be explained presently, a given primary state of flow relative to 2, having 
prescribed velocity c + U in this reference frame, may be described as subcritical 
or supercritical with regard to a certain wave-mode accordingly as the respective 
eigenvalue aa is positive or negative. 

The alternative problem of finding the wave velocity for a given a2 is of the 
standard Sturm-Liouville type only when U = const. and the upper surface is 
fixed. Then it readily appears that, for every real a2, there exists an infinite 
sequence of positive eigenvalues gh,/(c + U ) 2  whose only limit-point is + co 
(Yih 1960a). The problem is not of the standard type when the upper surface 
is free, since then c occurs in one of the boundary conditions as well as in the 
differential equation. However, Yanowitch ( 1962) has solved the modified 
problem and has proved the existence of a similar infinite sequence of eigen- 
values in the case U = 0, from which follows an obvious generalization to the 
case U = const. A more serious difficulty is presented when a non-uniform U 
is specified: certain bounds are then predetermined for c since, as may easily be 
appreciated as a physical condition (see Benjamin 1962a, p. loo), the function Q 
cannot be allowed to vanish anywhere in (0, h,) if there is to be a steady wave 
motion without any reversal of flow (i.e. subject to the assumption explained 
below (3.1)). In  this case, therefore, an admissible value of c is not necessarily 
forthcoming from either of the systems (3.12), (3.13) for arbitrary a2. Disregard- 
ing this possible limitation for the moment, we may proceed by means of Picone’s 
comparison theorem (Ince 1926, Q 10.31) to make an important general deduc- 
tion about the dependency of c upon a2. Applied to the present systems, the 
theorem shows that, for either form of the upper boundary condition, a reduction 
in a2 must always be accompanied by an increase in &; thus the wave speed 
IcI always increases with wavelength. This suggests that certain wave speeds 
can generally be found for which one of the possible values of a2 vanishes, a 
result established definitely by Yih’s and Yanowitch’s analyses in the case 
U = const. 

Presuming the general truth of this possibility, we define a critical state of 
flow to occur when Q --f Qn (n = 0,1 ,2 ,  . . .) such as to make a: -+ 0. The corre- 
sponding eigenfunction is denoted by #,(q), and by definition it satisfies 

(3.14) 

together with the boundary conditions (3.13). In  physical terms, a critical flow 
is one that can support infinitesimal stationary waves of indefinitely great 

length; and, since Qn = A c n  + V2, (3.15) 

the &, are determined by the long-wave velocities c, with respect to a fixed 
frame of reference. By Sturm’s fundamental comparison theorem (Ince, Q 10.3), 
the rate of oscillation of the solution of (3.14) increases with decreasing Q,; 
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hence we may order the possible solutions according to the property that 
oscillates just once more than q5, in the interval (0, h,), implying that 

Qo > Qi > Q2 > -.- 
when the Q, are given by (3.15) with the same function U on the right-hand side. 

In  the special case U = const., we know from the findings by Yih and Yano- 
witch mentioned above that we can find an infinite number of critical states 
represented by different Q,. However, it is U+c, rather than c, that is deter- 
mined as an eigenvalue in this case, and so with regard to particular physical 
problems the number of relevant critical states may be limited. For instance, 
if U is a positive constant and only upstream propagation (c  > 0) is in question, 
then only those eigenvalues U + c, that exceeded the given value of U are rele- 
vant-which may be none if 77 is large enough. This easy example suggests 
how we should interpret the foregoing definition of critical states when U(7) 
is not a constant. Without inquiring into the generality of the definition for an 
arbitrary function U ,  we can merely consider its ad hoc use in particular problems. 
Thus upstream propagation might be specifically in view, for instance, and for 
the prescribed U the definition would give a limited number, if any, of critical 
states with c > 0 as required. Nevertheless, it  appears likely that, when down- 
stream propagation is specified, an infinite number of relevant eigensolutions 
always exists. Though a formal proof of this possibility will not be attempted 
here, we may note that, by a choice of - c greater than the maximum of U ,  Q 
can be made arbitrarily small in part of the interval (0, h,) while remaining 
positive throughout; hence the rate of variation for the solution of (3.12) or 
(3.14) can be increased indefinitely, and from this the result in question may be 
inferred (cf. Benjamin 19623, footnote on p. 627). 

We reserve the classification n = 0 for the first wave-mode when the upper 
boundary is free. It is readily seen that 4, does not oscillate in (0, h,), and the 
respective solution of (3.12) represents the shortest possible sine wave for a given 
phase velocity c. This mode is similar to a surface wave on a homogeneous fluid, 
and the first true internal wave corresponds to n = 1. 

With respect to the nth mode, the condition Icl > Ic,~, hence Q > Q,, is 
termed supercritical. Comparison between (3.12) and (3.14) by means of Picone’s 
theorem shows that, for either form of the upper boundary condition, the 
respective eigenvalue a2 (i.e. for a q5 with the same number of oscillations in 
(0, h,) as 4,) is necessarily negative, which means that sinusoidal stationary 
waves are impossible. For a subcritical state, with IcI < Ic,J and so Q < Q,, 
the eigenvalue a2 is positive and therefore sinusoidal waves in the particular mode 
can occur. This division of flow states is essentially the same as can be made for 
open-channel flows of homogeneous fluids and for swirling flows along ducts of 
circular cross-section (see Benjamin 19623, $3). 

3.5. Non-linear theory for long waves 

An approximation having the same status as the first-order theory of ordinary 
solitary and cnoidal waves is forthcoming when the flow-force parameter S - So 
is evaluated to O(@) from the integrals-(3.3) and (3.4). To establish this approxi- 
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mation the following properties are assumed by analogy with well-known results 
from classical solitary-wave theory, being confirmed a posteriori by the present 
results (see remarks in Q 1). 

(i) The horizontal scale of the relevant wave motions is O(e4).  Accordingly, 
a compressed measure of horizontal distance is defhed by X = e b ,  so that 

Cf? = 45,  (3.16) 
where C$ is O( 1). 

(ii) The departure from a critical condition of flow (e.g. the difference between 
the actual wave speed c and c,) is O(E).  Hence we put 

Q = Q, + e ~ n ,  (3.17) 

where yn > 0 for supercritical and 7, < 0 for subcritical conditions. 
(iii) The wave resistance So-S is O(e3). This assumption is, of course, the 

explicit basis of the proposed procedure for deriving the non-linear theory, and 
it now appears to be consistent with the result (3.11) of the infinitesimal-dis- 
turbance theory when coupled with the assumption (i). We accordingly write 

so - s = 83% (3.18) 

(iv) Although so far no energy loss has been allowed between the primary 
and disturbed flows, so that H remains the same function of 7 everywhere, it 
will be a great advantage with regard to eventual physical interpretations for 
us to recognize at this point that the theory can account for an energy loss that 
is O(e3). If we write 1; ( H ,  - H )  C E ~  = e3r (3.19) 

and assume r = O( l ) ,  this term is simply added to the third-order approximation 
derived from (3.3) and (3.4), while the other terms are the same as when derived 
under the assumption r = 0.t 

Introducing (3.16), (3.18) and (3.19), we get from (3.3) and (3.4) 

2e3(r - 9 )  = p€Y&5,. - 2i7PCCJ - E3&(C% + c3> drl 

= .“5(QC7 - SPC)lP -S”[e2@25J7 - SP5)5+ e3&(C% + C3ld7. (3.20) 
0 

Introducing (3.17), putting 
5 = A X )  M7), (3.21) 

t It is perhaps worth further emphasis that this gross representation of possible dissi- 
pative processes is strictly sufficient for the deduction of wave properties, provided the 
energy loss envisaged is indeed only O(2). A more refined definition of e3r may be required, 
however, if the loss occurs through ‘breaking’ a t  the front of a wave-train, a case that 
will be discussed later. The dissipation of energy in turbulence then may be accompanied 
by some significant mixing of the fluid, i.e. by turbulent diffusion of the density gradients. 
Provided the effects of this are only O(E3), they too can by accommodated by the theory. 
For instance, mixing will tend to raise the centroid of the density distribution and so 
increase the negative value of the final term in (3.4). If we consider all perturbations to 
the integral (3.4) and define So - 8 r  to be its value for the ‘ground state’ that is produced 
by the dissipative process, and upon which the waves in question are to be formed, then 
we effectively cover the possible effects of mixing as well as the reduction in H .  
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and using the fact that 4, satisfies (3.14) and the boundary conditions (3.13), 
we find that (3.20) is satisfied, all terms to O ( 8 )  being cleared, if 

[Note that Q is retained in the coefficient off%, rather than Q, being substituted 
as would be consistent with the other approximations. Thus the length scale 
of the final solutions is determined with somewhat greater precision thanis 
strictly necessary at this order of approximation. The justification for such an 
improvement was discussed by Benjamin (1962a, see note on pp. 109, 110) with 
regard to solitary waves in homogeneous fluids, and the same considerations apply 
here.] Upon integration by parts of the second term on the right-hand side, the 
integrated terms cancel. There follows the nicely symmetrical result 

I ~ Z  = ~j2-q3+2($-T) ,  (3.22) 

in which (3.23) 

(3.24) 

(3.25) 

Equation (3.22) determines the horizontal distribution of the wave elevation. 
Note that this equation has the same form whether the upper boundary is fixed 
or free; the boundary condition affects the final results only through the eigen- 
function 4%. Note also that the coefficient I > 0, and that J > 0 or J c 0 accord- 
ingly as the flow state is supercritical or subcritical: K may be either positive or 
negative and, as will be seen presentIy, its sign determines whether the waves are 
of elevation or depression. As must be true for consistency, it may easily be 
coniirmed that the arbitrary constant multiplying 4n as defined will not affect 
the result for 5 obtained from (3.21) and (3.22). 

While being formally correct to O(e3), the present approximation is open to the 
following practical objection, to meet which a certain adjustment needs to be 
made. Taking h,, as the unit of length, c, as the unit of velocity, and say p(0)  as 
the unit of density, one finds that for n = 0 the coefficient K is O(l ) ,  but for 
n = 1 it is O(b),  where b is the magnitude of the density variation or, more 
generally, of the variation of Q1. The latter result may be seen from the expression 
( A  2) for K given in the Appendix, and it is borne out by Example 3 in tj 4 below. 
Now, for our approximation to be reliable, presumably the third-order terms 
retained in the expansion of the flow-force integral (3.3) should greatly exceed 
the next term in the expansion with (3.21) substituted. Thus it appears that 
we reauire K $ eL, where 

1 
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But L is found to  be O( 1) for all n, and so at first sight it seems that for internal 
waves with n = 1 the theory may be limited to amplitudes for whicn B < b. 
Since b is very small in most practical applications, this would be a severe 
restriction on the usefulness of the theory. 

Fortunately, the limitation may be removed by the simple expedient of put- 
ting $,(y) instead of 

(3.26) 

in (3.21). That is, we take 

5 = f (XI  $n(Y) 
= f (1) M r  + 4 
= f M r )  + s5$,(r) + 4s2C24,,(r) + * .I 
= f$ + ef2$+, + ."f"(+24,, + $43 + - - * 

and substitute in the expansion of S - So as before. To third order in B, an equa- 
tion for f ( X )  identical with (3.22) is obtained. But after lengthy calculations, 
which do not seem worth reproducing here, the fourth-order remainder is found 
to be the sum of various terms that are all O(bs) or smaller relative to the terms 
retained in the third-order approximation. Thus now the only condition on 
the validity of the approximation appears to be that be should be small. Long 
(1965) has made a comparable analysis using y rather than 7 as an independent 
variable, though only considering the case of a fixed upper boundary, and the 
accuracy of his approximate results also appears to depend on this condition 
alone. 

The expression (3.26) withf determined by (3.22) will therefore be adopted as 
the more accurate approximation for internal waves when b is small. 

3.6. The solitary wave 
The physical circumstances of the wave are that it arises from the primary 
flow without change of energy or flow force; thus r = s = 0. Under these con- 
ditions a, non-trivial real solution of (3.22) exists only if J > 0 (supercritical 

f = a sech2 K X ,  case). The solution is 

where a = J / K ,  K = +(J/I)*. 

Hence the wave elevation may be expressed as 

(3.27) 

(3.28) 

and the amplitude parameter e may, in a specific physical application, be con- 
veniently determined by the maximum of I y - 7 I. As explained just above, & 
in this expression should be taken as a function of y rather than 7 for applications 
to internal waves (n 3 1) when b is small. The fact that K = O(b) for n, = 1 
now confirms the statement made in $ 1  that F2 = O(be) for internal solitary 
waves. 

It is particularly noteworthy that internal solitary waves are, like ones in 
homogeneous fluids, always supercritical; that is, the wave speed ]cI always 
exceeds the speed of infinitesimal long waves. The existence in theory of a variety 
of internal solitary waves corresponding to n = 1,2,3,  ..., a sequence having 
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no limit when U = 0, is probably not very significant in practical respects, 
since it would be difficult to produce the higher modes individually and they do 
not, of course, act independently of each other if superposed. The solitary wave 
corresponding to n = 1 is the most significant because, having a greater speed 
than any other internal-wave mode, it may emerge distinctly as the effects of a 
localized disturbance are propagated away from the origin. The author is 
currently undertaking some experiments on this aspect and hopes to report the 
findings in due course. 

3.7. Cnoidal waves 

Equation (3.22) has a periodic real solution when the cubic in f on the right-hand 
side has three distinct real roots. The supercritical and subcritical cases require 
separate discussion as follows. For clarity we assume that K > 0, but the physical 
conclusions are readily seen to be the same when K c 0. 

Supercritical case 
We have J > 0 and so the form of the cubic is as illustrated in figure 2 (a).  

When r - s  = 0,  curve A is described; i.e. the cubic has double roots f = 0. 
Over the range where the cubic is positive between f = 0 and the higher root, 
equation (3.22) has the solitary-wave solution (3.27).  For a periodic solution 
the curve must be lowered to become one of type B, and so it is necessary that 
r - s > 0. Thus, in physical terms, we see that periodic waves can arise from a 
supercritical flow only if some energy is lost, but at the same time not too much 
flow force is lost (e.g. by frictional drag at the fixed boundaries of the flow). The 
solution in this case represents an undular bore or hydraulic jump, and the 
physical conditions just mentioned are the precise counterpart of the conditions 
that Benjamin & Lighthill (1954) showed to apply to the undular bore in open- 
channel flows of homogeneous liquid. 

If the three roots are denoted by fit f2 and f 3  as shown in figure 2 ( a ) ,  with 
fl > f2 > 0 and f3 < 0 essentially, the solution of (3.22) is easily shown to be 

with 
(3.29) 

(cf. Lamb 1932, $253) .  Since the period of the elliptic function en2 is 2K(k) ,  the 
wavelength is 2m-lK(k) .  Note that the modulus k -+ 1 as -f3 -+ f2 -+ 0 (curve A); 
in the limit the wavelength becomes infinite and, as expected, (3.29) reduces to 
the solitary-wave solution (3.27).  If the cubic is lowered sufficiently (i.e. r - s  
increased sufficiently) so that curve C is approached in figure 2 ( a ) ,  we have 
f2 +f1 and so k + 0; (3.29) then describes a sinusoidal wave of infinitesimal 
amplitude and wavelength r/m. This case may conveniently be left for discussion 
later. 

Subcritical case 

We now have J < 0 and so the form of the cubic is as shown in figure 2(b) .  In  
this case there is no non-trivial solution corresponding to curve A' for s - r = 0. 
Thus, no wave can arise from a subcritical parallel flow without change of energy 
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or flow force, a conclusion already known for open-channel flows of homogeneous 
liquid (Benjamin & Lighthill 1954; Benjamin 1956). To produce waves in this 
case the curve must be raised to become of type B', and so we must have s - r > 0. 

\ 

A J f 2 - K f 3 + 2 ( s - r )  

B' 

* 
f 

(b) 
FIG~RE 2. Forms of the cubic Jf - Kf + 2(s - T )  with K > 0 : 

(a) supercritical case J > 0; (b) subcritical case J < 0. 

This result represents the phenomenon of wave resistance: if a fixed obstacle 
spanning a subcritical flow generates a wave-train in its wake (lee waves), the 
drag on the obstacle equals the flow-force reduction ess in the receding stream. 
We also conclude that energy dissipation, measured by esr, tends to diminish 

17 Fluid Mech. 25 
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the wave amplitude. The cnoidal-wave solution (3.29) applies, with obvious 
modifications, to this case also. 

When s-r is made sufficiently large, the curves of type B’ in figure 2(b) 
approach curve C’, for which the minimum point lies exactly on the axis. Curve C’ 
has the same essential features as curve A in figure 2 (a ) ,  except that the origin is 
shifted, and so the double root represents a, supercritical parallel flow. As C‘ 
is approached from A’, the waves described by the solution of (3.22) become 
progressively larger in amplitude and longer, tending finally to resemble a suc- 
cession of solitary waves. The value of e3s required to raise the cubic from A’ 
to C’ represents the largest wave resistance that can be manifested, in the 
absence of dissipation, by wave formation in the particular mode n on the 
given subcritical flow. 

3.8. Internal hydraulics: conjugate flows 
It must be remembered that the present theory is merely a first approximation 
to long waves of finite amplitude, and the flow state is assumed to be close to 
the criticalinall examples (cf. equation(3.17)). Benjamin (19626, $3.2) hasshown 
in general how a number N may be defined such that N > 1 represents super- 
critical states and N < 1 subcritical ones. [One considers travelling-wave 
disturbances superposed on a given steady flow, and lets c+ and c- denote the 
absolute velocities, measured positively in the direction of flow, at which waves 
of extreme length propagate respectively with and against the flow. Then this 
characteristic number may be defined by N = (c+ + c-)/(c+ - c-).] Accordingly, 
the present condition is expressible as N = 1 + O(be),  where be is small by our 
basic hypothesis. However, several highly plausible physical conclusions regard- 
ing flow states with N further from 1 may now be drawn by analogy with the 
results of the classical theory of open-channel flows. At the same time we may 
suitably introduce into the discussion the principle of ‘ conjugate-flow pairs’ 
which was established in a general way by Benjamin (1962b) with special regard 
to swirling flows, but whose application to heterogeneous-fluid flows is equally 
valid and was pointed out as such in the previous paper. The following physical 
arguments are intended primarily to refer to the first internal-wave mode 
corresponding to n = 1. Similar interpretations might be conjectured for the 
higher modes, though with less certainty for the reasons already noted in con- 
nexion with the solitary-wave solution. 

First, we may suppose that as N is progressively raised above 1 the internal 
solitary wave will approach an extreme form, corresponding to the sharp- 
crested form that is a well-known result for the classical solitary wave of maxi- 
mum height (which occurs at N = 1.25 approximately). An attempt to produce 
a solitary wave with N greater than the limiting value, say N,, will lead to ‘break- 
ing ’ of the wave, presumably some kind of mixing process inside the fluid with 
accompanying dissipation of energy.t We may further conclude that a bore 

t So far very little seems to be known experimentally about the breaking of progressive 
internal waves, though recent experiments by Mr S. A. Thorpe at  Cambridge have greatly 
illuminated the process of breaking for standing oscillations in strattified liquids. The nature 
of breaking in the fmst cam must obviously be something quite different from the formation 
of white-caps by ordinary water waves. 
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with N significantly greater than N, will break a t  the front, since a small loss of 
energy at the front now cannot produce periodic waves in the way previously 
explained. This is a well-known feature of bores in ordinary open-channel flows, 
which develop turbulent fronts when N > 1.25 and become progressively more 
turbulent as Nis raised. 

Waves of extreme form can also be produced from a subcritical flow, when 
N is sufficiently smaller than 1 and the flow-force reduction e3s is large enough. 
That is, a change like A’ + C’ in figure 2 (b)  can no longer be brought about by the 
smooth formation of waves; in the sequence of possible cases given by increasing 
e3s step by step, breaking intervenes before a state neighbouring on the critical 
one C‘ is reached. Thus, when N for the oncoming flow is below but not close to 1, 
lee waves formed behind an obstacle can be swelled to breaking if the size of the 
obstacle, and hence the wave drag upon it, is made large enough (cf. Benjamin 
1956, pp. 231, 245)t. 

We have that the change A’ --f C’, or again C + A ,  implies a reduction in 
flow force. But the minimum points of A and C‘ represent supercritical uniform 
flows, while the maximum points of C and A’ represent subcritical ones. Hence 
we conclude that any supercritical flow withN near 1 possesses an energy-conserv- 
ing ‘conjugate’ state for which the flow force is larger. This is in fact a general 
result unrestricted as to the value of N ;  it was proved by Benjamin (1962b) 
using a variational argument and is well known in the simple instance of ordinary 
open-channel flows. Benjamin also proved in general that, as the value of N 
for a supercritical flow is raised by varying some physical parameter, the con- 
jugate subcritical value of N is lowered and the flow-force excess of the conjugate 
state is increased. These properties may readily be confirmed from the present 
results. Our extension of the conjugate-flow principle to include the effects 
of small energy losses explicitly is special to the case of near-critical conditions, 
however ; losses that are not small (i.e. when H changes by large fractions) cannot 
properly be analysed without additional physical hypotheses. 

The change from the subcritical to the supercritical member of a conjugate 

t In this, as in all other instances where a steady disturbance is supposed to  be gener- 
ated in a aubcritical flow, the following important point of interpretation needs to be borne 
in mind. When an obstacle is introduced into a pre-existing subcritical flow, its effect 
will generally propagate far upstream so that, after a steady state is reached, the flow 
prevailing in front of the obstacle will not be the same as the original one. This pheno- 
menon is commonly called ‘blocking’ and it reflects the general principle, well known in 
open-channel hydraulics, that subcritical states of flow depend essentially on the con- 
ditions imposed downstream and so cannot be determined arbitrarily at their sources. 
Accordingly, in a steady-state model for lee waves, the parallel flow specified in front of the 
obstacle must itself, as well as the waves downstream, be regarded as a development from 
some other, more basic flow that would occur in the absence of the obstacle. The upstream 
influence of a small obstruction is often quite small in comparison with the wave effects 
produced downstream, however, and so it may be reasonable to investigate the down- 
stream effects of a varying obstruction on the basisof the same model for the flow upstream. 
Moreover, this somewhat awkward point of physical interpretation is effectively circum- 
vented by any theory that, like the present one, allows the primary density and velocity 
distributions to take arbitrary functional forms; the complete gamut of possible flow states 
upstream and downstream of an obstacle is thus covered in principle, independently of 
practical questions regarding the realizability of any particular flow upstream. 

17-2 
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flow pair, as illustrated by A’ + C’ in figure 2 (b ) ,  represents a situation that might 
well be realized in practice if the subcritical N is not too large. The supercritical 
flow may form downstream from an obstacle large enough to exert the large force 
So - S, provided the conditions far downstream are favourable; specifically, 
they must not impede the flow to the extent of precipitating an internal hydraulic 
jump immediately behind the obstacle (Benjamin 1965, p. 521). The situation 
in view is analogous to the one in open-channel flow where a transition Eom 
subcritical to supercritical states is brought about by a sluice gate or other 
obstacle spanning the stream. 

The change corresponding to  A -+ C in figure 2(a) is the counterpart of the 
classical model for a dissipative bore (Lamb 1932, $280), in which a transition 
from a supercritical uniform flow to a subcritical one is supposed to occur for a 
constant flow force. Let us also assume s = 0. The value of r ( > 0) required to 
lower the cubic from A to C represents the maximum dissipation then possible 
at the front of the bore; and if r is less than this value the bore must be undular 
in form. The wave amplitude is obviously largest when r is very small (provided 
of course that 1 c N < LY, and therefore waves nearly the same as solitary waves 
are possible), and the amplitude decreases to zero as the dissipation approaches 
the maximum and a uniform subcritical flow is produced downstream. 

3.9. The special properties of linear systems 

It was explained at the end of $ 2  that, if the basic equation (2.13), or (2.8), 
for the stream-functions is linear, the expansion of S - So terminates at second 
order in E when the upper boundary is fixed. Hence in any such case we shall find 
K = 0, so that there is no solitary-wave solution. This conclusion is obvious 
from the flow-force integral expressed in the form (2.12), but it is not immediately 
evident from the alternative form (3.3) which is the basis of the present analytical 
development. However, since the two forms are equivalent and since the existence 
of solitary waves obviously cannot depend on the choice between $(x, y )  or 
y(z, 7) as dependent variable, we are bound to find for every case in question that 
K = 0 according to the definition (3.25). The reason why the conclusion holds 
only for a fixed upper boundary is clear: the boundary condition (3.7) a t  a free 
surface is non-linear and can provide the non-linear ingredients essential to 
solitary waves, just as in the classical theory where the equation for the stream- 
function is of course linear (Laplace’s equation). Nevertheless, it is remarkable 
that only the linearized form (3.8) of the fiee-boundary condition enters the 
present analysis explicitly, though the non-linear effects of a free surface are 
implicit in the condition of constant flow force as used in the final approximation. 

The non-existence of a solitary-wave solution implies there is no neighbouring 
cnoidal-wave solution derivable for a supercritical flow subject to energy loss. 
Thus no steady bore or hydraulic jump is possible in a linear system. This con- 
clusion was demonstrated in a quite different way by Benjamin (19623) with 
regard to vortex flows. It must be recognized, however, that in general both 
the density and velocity distributions, p and W ,  must be chosen in special ways 
to  give a linear system (see Long 1958; Yih 1960b). Accordingly, only the possi- 
bility of a stationary hydraulic jump, i.e. in a situation for which the velocity of 
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the flow upstream is a basic specification of the physical model, is ruled out by 
the artifice of making the system linear. For travelling bores, on the other hand, 
only p and U can be regarded‘ as basic specifications; W = c + U is not, because 
c is a wave property. A choice of W to make the respective steady-flow model 
linear is not necessarily allowable, therefore, and presumably travelling solitary 
waves and bores are possible for any given p and U ,  since they are free to travel 
at speeds that make the relative flow a non-linear system. 

Only one relevant example comes to mind in which finite-amplitude waves 
of permanent form are known a priori to satisfy a linear equation. This is the 
case of axisymmetric disturbances in a fluid with constant density and with 
uniform angular velocity together with zero axial velocity in the undisturbed 
state. In  keeping with the present conclusions, Benjamin & Barnard (1964) 
have shown both theoretically and experimentally that a continuous disturbance 
propagated into the steady-state region cannot develop into a steady bore, but 
is instead headed by a continually dispersing wave-front. 

The foregoing remarks only concern applications to  supercritical flows, and 
on the basis of present ideas there is no objection to the use of linear models for 
lee waves, which necessarily arise from subcritical flows. When K = 0, the 
cubic in f represented in figure 2 reduces to the quadratic Jf” + 2(s - r) ,  which is 
curved downwards in the subcritical case (J  < 0). Thus periodic solutions are still 
possible when the wave-resistance parameter s > 0. The solution of (3.22) is 
then sinusoidal, as indeed must be expected since finite-amplitude waves satisfy 
the same equations as infinitesimal ones when the overall system is linear. 

An important qualitative distinction remains, however, between subcritical 
flows in linear and non-linear systems. It is that for the former no conjugate 
supercritical flow exists which could be produced from the subcritical state by 
a large reduction in flow force (i.e. large 8 ) .  This other peculiarity of linear systems 
was also pointed out by Benjamin (1965), and it is demonstrated now by the 
fact that the parabola replacing the cubic curves in figure 2 (b )  has no minimum 
point which, by a sufficient increase of s, could be raised to touch the axis. 

Allied to the use of linear systems to provide tractable models of stratified- 
flow phenomena, use has often been made of certain approximations, notably 
the so-called Boussinesq approximation (e.g. see Long 1965), which may be 
justified on the assumption that the density gradient is sufficiently small. The 
present results incidentally give some helpful insight into the significance of such 
approximations, though we shall not digress to discuss the matter here. It 
is taken up in the Appendix to this paper. 

4. Examples 
The chief advantage of the preceding analysis is that it gives a general account 

of internal waves of finite amplitude and permanent form while avoiding the 
need to focus attention on any particular physical model. The leading results 
comprising equation (3.22) and its solutions are in forms that may readily be 
applied to any example, however, and they could even be used without undue 
difficulty for applications where the primary density and velocity distributions 
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are determined experimentally. It would be required only to solve the ordinary 
differential equation (3.14), which might be done readily enough by machine 
computation, and then to evaluate the integrals (3.23)-(3.26). 

The properties of the solitary wave will now be worked out in three examples 
to illustrate the application of the theory and to provide some comparisons with 
results found previously in other ways. It seems justified to claim that the present 
general formulae give the wave speed and other properties with greater facility 
than any other known method. 

Example 1. The claassical solitary wave 

This comprises a degenerate case of the present results, given by putting 
p = po (const.), Q = poc2. The upper boundary must, of course, be free; there is 
obviously no solution when the boundary is fixed. 

In  this case equation (3.14) for the eigenfunction $, reduces to 

and the solution satisfying the lower boundary condition is 

$0 = 7. 

4 = gh,, 

~o = Q - & o  = P ~ ( c ~ - c ~ ) ,  

The upper boundary condition (i.e. the last equation of (3.13) with c = co) now 
gives 

which is the familiar classical result for the speed of infinitesimal long waves. 

(4.1) 

We have 

and, for the coefficients defined by (3.23)-(3.25), 

I = ~hnpoc2q2dq = +poc2h& 
0 

Hence substitution into (3.28) gives 

(38  - 3C$ x y-7 = q - 1 sech2 (zi- ) [ 2ch0 

For the elevation y(ho) - h, of the free surface, denoting its maximum value by 
A, wegetfrom (4.l)and(4.2) 

y(h,) - h, = A sech2 ((h03:3”3 - (4.3) 

and c2 = g(ho+A). (4.4) 

These are precisely the results found originally by Rayleigh (see Lamb 1932, 
$252) and conikmed by many other writers since his time. 
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Example 2. Two-layer system 
The physical model is illustrated in figure 3. Take p = p, (const.) in 0 < 7 < h,, 
and p = p2 (const. < p,) in h, < 7 < h, = hl + 8,. Also take the upper boundary 
7 = h, to be a rigid plane, and assume U = 0 so that Q = pc2. Put R = hl/h, 
and c = p2/pl. The problem of the solitary wave in this system has been treated 
by Keulegan (1 953) and, in more detail, by Long (1 956). 

FIGURE 3. Illustration of two-layer system showing maximum vertical 
displacement A of interface by solitary wave. 

There is only one possible long-wave mode, and so the required solution of 
(3.14) may be written $ without need of a suffix. The respective critical wave 
speed is denoted by a. Equation (3.14) becomes 

in each layer separately, and the solution satisfying the boundary conditions 
# ( O )  = $(h,) = 0 and being continuous at the interface 7 = h, (as required for 
continuity of the vertical component of velocity) is 

Note that, since # is largest at the interface, the maximum vertical displacement 
at a given x occurs there. 

Applying the limit process 
h 1 f 8  

8-0 .fhl-8 
lim { }dy 

to equation (3.14), we find a second condition at the interface to be 

?? (Pd#/@) = S(P$), ( 4 4  

where () denotes the difference in the enclosed quantity across the interfqce. 
This in fact represents the requirement that the pressure is continuous, and it is 
seen to imply that the horizontal component of velocity is discontinuous. Sub- 
stitution of (4.5) into (4.6) leads to 
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which agrees with the formula given by Lamb (1932, p. 371) for the speed of 
infinitesimal waves. 

Equations (3.23)-(3.25) now give 

I = +p1C2h; (1 - cT +;) , 

K = P1C2h, I - c ~  - ( (lRR)']' 
Substituting these expressions into the solitary-wave solution (3.28), we obtain 
for the displacement of the interface 

(4.8) y(h,) - h, = A sech2 wx, 

with (4.9) 
C2 (l-R)'-c~Rz A _ -  
C2 - + ( I  - R) ( I  -R + ~TI?) h,' 

(4.10) 
3AR{(1-R)2-~R2} C2 

4hi (1 - R)2 (R+ c ~ -  ~TR)  2' w2 = - 

These results agree with those found by Keulegan (1953) and Long (1956, cf. 
equations (20) and (28) with F, = F2). They reduce to the results (4.3), (4.4) in 
the previous example if the density of the upper liquid is made vanishingly small, 
i.e. CT+ 0. 

Note that the wave is one of elevation (A > 0)  or depression (A < 0) accordingly 

a8 (1 - R)'- UR'S 0 (4.11) 

(cf. Long, equations (22)). These conditions are found to be equivalent to 

Thus, if the fractional density difference 1 - c~ = (p1-p2)/p1 is very small, the 
wave is one of elevation when the upper layer is the deeper of the two, and is one 
of depression when the lower layer is the deeper. 

R 2 4 + g(1- (T) +&(I - C T ~ +  o(1- 4 3 .  

Example 3. Fluid with exponential density gradient 
The physical model is illustrated in figure 4. It has previously been investigated 
by Peters & Stoker (1960) in the case of a free upper boundary, and by Long 
(1965) and Benney (1966) in the case of a fixed upper boundary. We take 

p = poe-pq(/3 > 0 )  and U = 0, 
so that Q = poc2e-flq. 

Equation (3.14) now becomes 

(4.12) 

and the solution satisfying the lower boundary condition $,(O) = 0 is 
$, = eipq sin A,q, (4.13) 

with (4.14) 

From this point on, the cases of a fixed and of a free upper boundary require 
separate treatment. 
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Fixed upper boundary 

The boundary condition q5,(ho) = 0 shows that 

A,h, = nn (n = 1,2,3, ...). 

P=poe-!V 

FIGURE 4. Illustration of flow system in which the density p of the 
fluid decreases exponentially with height. 

The coefficients defined by (3.23)-(3.25) are found to be 

he 
I = poc2So sinZA,qdq = ipoc2ho, 

- p0c~@3773{l - (- 1)"exp (+,5ho)} - 
ho( 9n2n2 + i p h ; )  

Substituting (4.13) and (4.17)-(4.19) into (3.28), we are led finally to 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

y - q = ( - 1)"+l A e4lg sin (4.20) 

with A > 0 and 
2n3n3PA{exp (&,Oho) + ( - I)n+l} 

~. 
C2 _ -  (4.21) - 1+ 

(n2 772 + i p g  h;) (9n27rZ + ip2h;) ' c: 

n3n3c:/3A {exp (4/3h0) + ( - 
d h ;  = 

2c2( 9n2nz + iP2h;) (4.22) 

These results agree with those found by Long (1965) and Benney (1966). Note 
that the solitary wave for n. = 1 is a wave of elevation in this case. 
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On the assumption that Ph, < 1, which covers 
(4.16) gives as a good fist approximation 

while (4.21) and (4.22) give approximately 

-I+---, 
9nn 

9nn ’ = 1+- PZhoA neven, 

c2 _ -  
c: 

most practical applications, 

(4.23) 

(4.24) 

, neven. 
- nnp2h, A - 

36 

I 
(4.25) 

It is interesting that for n even the values of c2 - c: and u2 are greatly less, by a 
factor O(/3ho), than the values for n odd. This curious property was noted by 
Long (1965). The results for n even seem unlikely to have any practical signifi- 
cance, however. For a very small /3ho, as is usual, a solitary wave in this category 
is so extremely long, and its speed so little different from c,, that its detection as 
a true wave of permanent form is probably impossible. 

Free upper boundary 

The boundary condition on q5, is now 

(4.26) 

which, when (4.13) is substituted, gives 

A, cot A, ho + */3= sic:. (4.27) 

We shall henceforth exclude the case n = 0, for which (4.27) is satisfied by (4.1) 
very nearly (with A, very small according to (4.14)). 

On the assumption that ,8ho is small, (4.14) shows the right-hand side of (4.27) 
to  be large in comparison with A,(n > 0) .  Hence we deduce that h,h,-nn 
is a small positive number, and to a first approximation we find that 

(4.28) 

(4.29) 

Thus the infhitesimal-wave speed is very nearly the same as when the upper 
boundary is fixed, and the only qualitative difference in the solution is that q5, 
changes sign just below the surface, so that in a thin layer a t  the top the vertical 
displacement of the fluid is in a direction opposite to that below. 

Since the solitary-wave results become unduly complicated otherwise, 
only the first approximation for small /3h, will be given. The expressions (4.17) 
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and (4.18) therefore suffice for I and EJ. In  the evaluation of K from the integral 
preceding (4.19), the only difference is that, after transformation to the dimen- 
sionless variable of integration hnq, the upper limit is given by (4.28) instead 
of (4.15) as before. It is found in this case that 

K = - ?  SPO c 2,hnp, nodd, 

= POcihnP, n even. 

Hence, in place of (4.20), (4.24) and (4.25), the results are 

y- q = ( - l)nAeip% sin - + - y sech20z, K 3 I 
i _ -  c2 - 1+- 14pA nodd, 

cn 9nn 

= 1 + - - ,  2ph neven, 
nn 

I n even. 
nnpA =- 

2 '  

(4.30) 

(4.31) 

(4.32) 

(4.33) 

Thus the solitary wave for n = 1 is a wave of depression in this case, except in 
a thin layer just below the surface where the displacements are in the upward 
direction. 

This major distinction between the properties of solitary waves according to 
whether the upper boundary is fixed or free appears very remarkable, particu- 
larly since at first sight one might reasonably suppose the effect of the difference 
in boundary conditions to become insignificant for internal waves when p is 
sufficiently small. This is a convincing demonstration of the principle, recently 
discussed by Long (1965), that small effects without obvious importance and 
such as might be neglected in certain approximate theories may in fact be crucial 
with regard to finite-amplitude waves (see Appendix). 

The present formulae (4.32) and (4.33) agree with the results found by Peters 
& Stoker (1960) for n = 1. 

5. Conclusion 
Perhaps the most obvious limitation of the main analysis in 0 3 is the absence 

of any proof of convergence for the method of approximate solution. It is, in 
effect, assumed that waves of permanent form exist and then their properties 
are worked out approximately, but of course this approach does not establish 
their reality with complete certainty. The author believes, however, that this 
aspect is already adequately covered by the work of Ter-Krikorov (1963), 
which justifies complete confidence in the propriety of first-order approximations 
to permanent internal waves. Without this analytical background there might 
be serious cause for doubt because, unlike the situation as regards the ordinary 
solitary wave, no conclusive experimental evidence is available as to the per- 
manence of internal solitary waves. 
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It seems likely that an existence proof on simpler lines than Ter-Krikorov’s 
argument could be constructed on the basis of the present method of approach, 
proceeding from the flow-force integral (3.3). An encouraging fact in this regard 
is that, since the integral has fixed limits and the only x-derivative present is 
cleared in the first approximation, there would be little difficulty in finding 
definite bounds on the error in any approximate evaluation of the integral. Hence 
proof of the existence of a solution by a method of the successive-approximations 
type seems feasible. This situation contrasts markedly with the very awkward 
one presented by orthodox methods of approach to solitary-wave theory (see 
Lamb 1932, 9 252), where progressively higher derivatives occur explicitly in 
each successive stage of approximation. Moreover, the physical meaning of the 
generalized solitary-wave theory, including cnoidal-wave solutions, is completely 
clarified by the present approach. The physical circumstances (e.g. the possible 
modes of generation) of periodic waves of permanent form remain highly obscure 
in the absence of an explicit definition of them in terms of flow force (cf. Lamb, 
3 253). 

The present theory could be applied more or less intact to axisymmetric 
swirling flows, which are well known to be mathematically equivalent to two- 
dimensional stratified flows. Conversely, theory developed in this other context 
is equally meaningful here. For instance, the author’s theory of the vortex 
breakdown phenomenon (Benjamin 1962b, 1965) can be used to prove the possi- 
bility of undular internal bores with complete generality as regards the primary 
density and velocity distributions, and it provides a basic framework (akin, 
one might say, to the basic theory of the hydraulic jump in open-channel flow) 
into which the present results fit quite naturally (in much the same way as 
Benjamin & Lighthill’s (1954) presentation of classical solitary- and cnoidal- 
wave theory was related to the hydraulic jump). The possibility of large periodic 
disturbances arising from a supercritical swirling flow, after some slight loss of 
energy occurs, was argued as an essential of the vortex breakdown theory, and 
though the context is different the present results virtually demonstrate the 
solutions that describe such disturbances. 

Appendix. Note on the Boussinesq approximation 
This approximation is commonly used in studies of internal waves, being justi- 

fiable in some applications where the fractional density variations are very small. 
The effect of the density variations on the inertial terms in the equations of 
motion is neglected, density being assigned its (constant) mean value where it 
appears as a factor in these terms; but density is still represented precisely as a 
function of height where it appears multiplied by g in the equation of motion 
for the vertical direction. 

The significance of the Boussinesq approximation has recently been discussed 
by Long (1965). He showed that its use generally demands caution, particularly 
when waves of finite amplitude are in question, and he pointed out in a specific 
example that the internal solitary wave depends crucially upon small effects 
neglected in this approximation. The matter may be illustrated very readily 
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from the preceding analytical results, and so a few points adding to Long’s 
discussion will now be noted. 

In  the present notation, the Boussinesq approximation amounts to putting 
p = const. in the function Q. If for simplicity of illustration we limit attention 
to the case U = 0 (i.e. waves propagating towards liquid at rest), we then have 
Q = pc2 = const. as the approximation to be examined. We also limit attention 
to the case of a fixed upper boundary. 

First consider equation (3.12) for infinitesimal sinusoidal waves. On the sub- 
stitution of $ = &-*@, the equation becomes 

One now sees clearly that, if the fractional variation of p is indeed small on the 
scale of the overall depth, then the approximation Q = const. has an insignificant 
effect on the solution @, and hence 9, Because of the boundary conditions 
@ ( O )  = @(ho) = 0, the coefficient { ) in ( A l )  is O ( n ~ / h ~ ) ~ ,  being raised to this 
order of magnitude by the smallness of Q / g  = pc2/g as compared with p,; and 
hence the final two terms in the coefficient are justifiably negligible. Thus, for 
infinitesimal waves at least, the Boussinesq approximation appears self-consis- 
tent and to have no qualitative effect on the solutions obtained. 

On checking its consequences in our non-linear theory, however, we see the 
possibility of serious error. Whereas the coefficients I and J of the general equa- 
tion (3.22) for long waves are found to be little affected by the approximation, the 
coefficient K appears to be altered radically by it. Integrating the right-hand 
side of (3.25) by parts and using (3.141, we obtain 

The two terms on the right-hand side of (A2) are generally of comparable size, 
but the Boussinesq approximation removes the second of them. Moreover, an 
additional approximation, often introduced in company with the Boussinesq 
approximation, is to take p to be a linear function of 7, in which case the first term 
of (A2) disappears also. With K = 0 there is no solitary-wave solution. 

When the density variation is small, the coefficient K is necessarily small, 
but an accurate evaluation of it is still essential to a reliable description of any 
solitary wave possible in the system. 
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